6 research outputs found

    Reproducible and User-Controlled Software Environments in HPC with Guix

    Get PDF
    Support teams of high-performance computing (HPC) systems often find themselves between a rock and a hard place: on one hand, they understandably administrate these large systems in a conservative way, but on the other hand, they try to satisfy their users by deploying up-to-date tool chains as well as libraries and scientific software. HPC system users often have no guarantee that they will be able to reproduce results at a later point in time, even on the same system-software may have been upgraded, removed, or recompiled under their feet, and they have little hope of being able to reproduce the same software environment elsewhere. We present GNU Guix and the functional package management paradigm and show how it can improve reproducibility and sharing among researchers with representative use cases.Comment: 2nd International Workshop on Reproducibility in Parallel Computing (RepPar), Aug 2015, Vienne, Austria. http://reppar.org

    Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells

    No full text
    Our understanding of Alzheimer’s disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer’s disease, both caused by a duplication of the amyloid-β precursor protein gene(1) (APP; termed APP(Dp)), two with sporadic Alzheimer’s disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-β(1–40), phospho-tau(Thr 231) and active glycogen synthase kinase-3β (aGSK-3β). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with β-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3β levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-β, in GSK-3β activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer’s disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer’s disease, even though it can take decades for overt disease to manifest in patients

    ESICM LIVES 2016: part two : Milan, Italy. 1-5 October 2016.

    Get PDF
    Meeting abstrac
    corecore